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A B S T R A C T   

Mechanistically-driven alternative approaches to hazard assessment invariably require a battery of tests, 
including both in silico models and experimental data. The decision-making process, from selection of the 
methods to combining the information based on the weight-of-evidence, is ideally described in published 
guidelines or protocols. This ensures that the application of such approaches is defendable to reviewers within 
regulatory agencies and across the industry. Examples include the ICH M7 pharmaceutical impurities guideline 
and the published in silico toxicology protocols. To support an efficient, transparent, consistent and fully docu
mented implementation of these protocols, a new and novel interactive software solution is described to perform 
such an integrated hazard assessment based on public and proprietary information.   

Introduction 

In silico toxicology (or computational toxicology) is being used 
directly or as part of the weight-of-evidence (WoE) for an increasing 
number of regulatory and industrial applications. This is driven by the 
need to (1) fill data gaps for chemicals in commerce with limited in
formation, (2) improve the efficiency of the discovery process for 
chemical products, (3) support the replacement, reduction, and refine
ment of animal use (3Rs), and (4) support regulatory guidelines where in 
silico approaches are defined as acceptable approaches [1]. One such 
regulatory guideline is the International Committee for Harmonization 
(ICH) M7 guideline “Assessment and Control of DNA Reactive (Muta
genic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic 
Risk” [2]. This guideline includes a computational toxicology option as a 
regulatory accepted test to predict the bacterial reverse mutation assay 
(often referred to as the Ames test) [3]. This fast computational test is 
included for several reasons. Firstly, for many of these impurities there 
may be insufficient amounts of the test material available for performing 
an actual Ames test. This may require synthesizing the chemical 
(including actual or potentially present impurities) which would sub
stantially add to the time and cost of performing such an assessment. In 
addition, such models have been shown to be sufficiently accurate, 
especially when coupled with an expert review, and they support the 
desired high-throughput assessment of the impurities [4–6]. 

The ICH M7 guideline describes how both experimental data 
alongside computational toxicology results are used to assess the po
tential for DNA-reactive mutagenicity, as shown in Fig. 1. The guideline 
uses this information to assign an impurity to one of five classes (shown 
in Table 1), which in turn supports whether an impurity needs to be 
controlled further or if additional testing is required. To support the 
assessment of classes 1, 2 and 5, it is important to identify any bacterial 
mutagenicity and carcinogenicity data available for any of the impu
rities. The guideline also identifies chemical classes representing high 
potency mutagenic carcinogens (termed “cohorts of concern”) which 
need to be handled separately as part of any risk assessment. These 
cohorts of concern include aflatoxin-like-, N-nitroso-, and alkyl-azoxy 
compounds. In the absence of any adequate experimental data, a 
computational assessment based on two complementary methodologies 
is recommended. One methodology should be an expert rule-based 
technology and the second should be a statistical-based technology. 
An expert review of all the information is prudent to assess the relevance 
and reliability of the both the experimental data as well as the compu
tational results [4,5,7,8]. In addition, an expert review can support the 
class assignment for inconclusive computational results and even refute 
the results given sufficient evidence, such as proprietary results for 
chemicals analogs. The principles and procedures for performing and 
documenting this process have been published by a working group 
including both regulators and industry [5]. 
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The ICH M7 guideline is a widely adopted example of an approach to 
hazard assessment based on the integration of a battery of both exper
imental in vitro and in vivo data alongside in silico results coupled with an 
expert review. This type of integrated assessment is becoming increas
ingly common in approaches that support a more mechanistically-driven 
and animal-free assessment. Initiatives such as the Adverse Outcome 
Pathways (AOPs), Integrated Approaches to Testing and Assessment 
(IATA), New Approach Methodologies (NAMs), and Defined Approaches 
(DAs) are advancing and documenting the state of the science to enable 
these future alternative and integrated approaches [9–13]. 

Experimental data generated using accepted protocols, such as the 
OECD test guidelines [14], supports the use of this data across different 
regulatory authorities and industry. The development of equivalent 
protocols for the use of in silico methods would similarly support 
adoption of these methods, whether as a standalone alternative method 
or in combination with experimental results. The in silico protocols 
would build on work documenting best practices in computational 
toxicology, such as the OECD validation principles [15], and the 
described approaches to defining the battery of mechanisms and asso
ciated tests to support an integrated assessment. 

A working group of over 70 organizations is currently generating 
such in silico toxicology protocols. This includes a framework outlining 
the components for any protocol [1] along with protocols for specific 
toxicology endpoints. To date, protocols for genetic toxicology [16] and 
skin sensitization [17] have been published with many protocols and 
position papers currently progressing. These protocols outline a series of 
defined toxicological effects or mechanisms that ideally should be 
assessed based upon available experimental data and/or in silico results. 
The protocols discuss the selection of such approaches, how to assess the 
reliability of the information provided, and how to combine the avail
able information to establish an overall hazard assessment and associ
ated level of confidence based on the WoE. The rules and principles 
underpinning this WoE process are provided within the protocol. This is 
illustrated conceptually in Fig. 2, showing how a series of toxicological 

effects/mechanisms are used to support the assessment of one or more 
toxicological endpoints; for example, this construct can be applied to 
assess the activation of the Nrf2-ARE pathway (the mechanism) within 
the prediction of skin sensitization in human (the endpoint). Guidelines 
for an expert review of the experimental and in silico results along with 
how the information may be combined are described within the pro
tocols. The procedure for documenting the entire decision-making pro
cess, along with any expert review, is also described in the protocols. 
Hence, these protocols support the adoption of in silico approaches 
within a well-defined hazard assessment framework by ensuring such 
methods are performed in a consistent, transparent, and reproducible 
quality-driven manner. 

Due to the complexity of these novel assessments described in such 
protocols, an interactive and visual software application for performing 
a hazard assessment is essential. This type of solution should support 
both the integration of the relevant experimental data and in silico 
predictions as well as the assessment of the reliability of the combined 
information. It should also steer the integration of all the available in
formation based on the rules and principles described in the protocols. 
The tool should also provide the ability to perform an expert review of 
the experimental data and/or in silico results at the same time as 
allowing any reviewer to assess the overall process of combining the 
information. All expert review and any resulting changes should be 
documented along with the entire decision-making process. 

The following paper outlines a proposal for an interactive and visual 
solution to this problem and discusses its implementation within the 
Leadscope computational toxicology solution. This includes the devel
opment of a visual and interactive hazard assessment platform in rela
tion to the ICH M7 framework [4,5], the genetic toxicology in silico 
protocol [16], and the skin sensitization in silico protocol [17]. The 
paper covers how the content, including databases containing historical 
toxicity information and computation models, are developed. It explains 
how the results from such database searches and in silico model appli
cations are integrated within a visual platform and how such a platform 
may be interrogated, and expert review performed and documented. 
The paper also presents information on the validation of the models and 
includes four case studies illustrating applications of such a platform. 

Methods 

Overview 

The implementation of an integrated hazard assessment platform 
supporting the application of in silico toxicology protocols [1] is sum
marized in Fig. 3. The visual hazard assessment platform ideally queries 

Fig. 1. Combining information on experimental data and computational toxi
cology results to support the ICH M7 class assignment. Bacterial mutagenicity 
and carcinogenicity data available for the target impurity are identified and 
combined with predictions. Statistical- and expert rule-based methods are 
applied for a computational toxicology assessment of mutagenicity. Predictions 
can identify high potency mutagenic carcinogens (cohorts of concern). 

Table 1 
ICH M7 Hazard Classification.  

Class Definition 

1 Known mutagenic carcinogen 
2 Known mutagen with unknown carcinogenic potential 
3 Alerting structure, unrelated to the structure of the drug substance; no 

mutagenicity data 
4 Alerting structure, same alert in related compounds which have been tested 

and are non-mutagenic 
5 No structural alerts, or alerting structure with sufficient data to demonstrate 

lack of mutagenicity or carcinogenicity  

Fig. 2. A hazard assessment framework for in silico toxicology protocols.  
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both the toxicity databases as well as applies in silico models to support 
the assessment of individual effects or mechanisms. Indeed, the platform 
uses both experimental and in silico results for each effect/mechanism 
defined in the protocol or guideline. To support access to the experi
mental results, the platform searches a database of historical toxico
logical studies linked to chemical structures. Public sources of 
toxicology data are used to populate this database. The database also 
supports the generation of in silico models based on different method
ologies. In addition, these models are refined and annotated through 
access to the literature and other online databases which enrich the 
models with mechanistic interpretations. Once experimental and/or in 
silico results for individual effects/mechanisms have been identified and 
reviewed, endpoints are then calculated based on the input along with 
the rules and principles documented in the protocol. The visual platform 
interactively supports interrogation of the results and performing an 
expert review. The following sections outline how such toxicity data
bases and in silico models are developed within Leadscope computa
tional toxicology solutions, how these resources are integrated within 
the platform, and how this platform can be interrogated. How such a 
platform has been developed to support the ICH M7 guideline as well as 
the two published protocols [16,17] is specifically discussed. 

Toxicity database 

As illustrated in Fig. 3, there are many public sources of toxicity 
study information. These include online databases (such as the National 
Toxicology Program [NTP] [18]), secondary sources of compiled in
formation (such as the Carcinogenicity Potency Database [CPDB] [19]) 
as well as individual study records contained in publications or regula
tory submissions. Information on both the tested chemicals and the 
toxicity study design and results are converted into an electronic data
base with information integrated for each compound. The following 
reviews the process of creating this content. 

It is important that all studies for the same chemical are linked to the 
same electronic depiction of the chemical structure. This is achieved by 
comparing each chemical (test article) to the existing database. Based on 
this comparison, the test article is either registered as a new chemical 
and given a new Leadscope ID or it is linked to a previously registered 
chemical. It can be challenging when only a chemical name has been 
reported, especially when the chemical has been referred to by different 
names. When a chemical structure is displayed within the source ma
terial, the depiction of its stereochemistry as well as aromaticity and 
tautomerism are considered as part of this matching. To support the 
computational modelling, mixtures and salt forms are often linked to the 
modellable forms of the chemical, referred to as the SAR form. 

Studies can vary significantly in the level of detail provided in 
describing the methodology used in identifying, verifying, and repre
senting the chemical substances of primary interest being reported on. In 
the best-case scenarios, an author will report three types of identifica
tion for substances: typed identification numbers, tradenames or sys
tematic names, and a structural representation. In the worst-case 
scenarios, an author may only provide a synonym or codename for a 
substance, which, in some cases makes it impossible to determine any 
chemical structure representation. In each case encountered the infor
mation regarding the substance identification is vetted and cross- 
compared to ensure agreement. If a conflict arises in the cross- 
comparison efforts, the context of the study is taken into consideration 
to provide guidance in correctly identifying substances. For example, an 
examination of the totality of the information supports any resolution 
where different or incomplete stereochemistry is provided. 

As part of the content building, information on both the study design 
and results needs to be included in the database to support transparency 
and expert review. The underlying information is not always in an 
electronic form that is suitable for processing automatically. In certain 
cases, it is necessary to enter the information by hand into an electronic 
representation. Where it is in an electronic form, it is possible to develop 
customized applications to read the content directly into the database. 
An essential process, irrespective of whether the step is performed 
manually or automatically, is to map the data elements described in the 
source material onto standardized terms. The Toxicity Markup Language 
or ToxML is a standardized organization of toxicity study design and 
results supported by controlled vocabularies that ensures the creation of 
a harmonized database [20]. 

A process of grading (i.e., creating an overall call for a specific 
toxicological effect or mechanism) is possible once the chemical struc
ture registration process and the content processing is completed and the 
harmonized study records are linked to these chemicals. As an example, 
an overall assessment for bacterial mutagenicity would include an ex
amination of the test and study calls for all entries matching each 
registered chemical. This process uses a series of rules to assess the 
different study results, such as whether an individual study source is 
trusted or authoritative and if the study is compliant with accepted test 
guidelines. In cases where the results are conflicting across the different 
studies, the WoE needs to be considered to derive an overall assessment. 

Table 2 summarizes the Leadscope database content used in the 
current platform and how such content maps onto the effects/mecha
nisms within the three implemented frameworks (ICH M7, the genetic 
toxicology in silico protocol, and the skin sensitization in silico protocol). 

Fig. 3. Overview of the implementation of the visual hazard assessment platform. NTP refers to the National Toxicology Program online databases and CPDB refers 
to the Carcinogenicity Potency Database, QSAR refers to Quantitative Structure-Activity Relationships. 
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In silico models 

Both the ICH M7 guideline and the in silico toxicology protocols 
recommend using multiple computational methodologies, including 
statistical-based and expert rule-based, since multiple concurring com
plementary methods increase the reliability of the prediction results [1]. 
Methodologies to profile chemicals into different toxicologically rele
vant categories and read-across approaches also provide key informa
tion in any hazard assessment framework. The following section outlines 
the computational models used within the hazard assessment platform. 

Statistical-based or Quantitative Structure-Activity Relationship 
(QSAR) models are developed within the Leadscope predictive data 
miner [21]. A number of these models predict a binary outcome, for 
example, the bacterial mutation statistical QSAR model predicts 
whether a chemical is mutagenic or non-mutagenic based on predictions 
made using Ames test data. These models use a training set of chemicals 
and toxicological data (response) extracted from the toxicological 

database previously described. The models are based on a number of 
calculated descriptors: (1) pre-defined structural features [22], (2) 
calculated physico-chemical properties, (3) chemical scaffolds auto
matically identified to map onto a disproportionate numbers positive or 
negative examples [23], and (4) significant active structural features 
extracted from the literature. Having selected an appropriate subset of 
these descriptors, a computational model based on the partial logistic 
regression algorithm [24] is applied to encode the relationship between 
the descriptors and the toxicological response. The models are further 
refined and then validated based on cross-validation and external vali
dation wherever possible. The models generate a probability of a posi
tive outcome, and a final prediction is made using defined cut-off values. 
For example, when the bacterial mutation model calculates a probability 
greater than 0.6 a positive assignment is made, a probability less than 
0.4 is assigned to be negative, and those predictions between 0.4 and 0.6 
are assigned as indeterminates. The implementation of the models per
forms an additional key step to assess whether the test chemical is within 
the applicability domain of the model, i.e., whether there is an increased 
reliability because of the overlap with similar training set examples as 
well as features used in the model. 

There are three types of QSAR models used within this platform: (1) 
“single statistical” models (using the methodology discussed as in the 
case of the bacterial mutation QSAR model), (2) “balanced statistical” 
models (used in cases where the toxicity response is skewed as in the 
case of the in vivo micronucleus QSAR model), (3) “categorical statisti
cal” models (used when the response is ordinal as in the case of models 
related to skin sensitization). 

The balanced statistical approach uses a series of models that are 
based on subsets from the training set, where each set is over or under- 
sampled to create more even distribution of positive and negative ex
amples. Training set examples from the underrepresented positive or 
negative class will be present in more than one subset. When making a 
prediction, the test chemical will be run through all models and an 
overall prediction calculated based on the combined results. 

When the toxicological response outcome is a categorical value 
based on either the severity of the outcome or the toxic dose, a series of 
models are built and incorporated within a decision tree. For example, 
the toxicological outcome for a Local Lymph Node Assay (LLNA) model 
is strong/extreme (where the effect concentration (EC31) is less than 1, 
moderate (1 ≤ EC3 < 10), weak (10 ≤ EC3 ≤ 100), or non-sensitizer 
(EC3 > 100). A series of individual models are built based on these 
cut-off values. In this case, three binary models are built to predict each 
of these categories; for example, an individual model predicts whether a 
chemical has an EC less than 1 (strong/extreme sensitizers), and two 
other models predict the moderate and weak categories. The results 
from each of the models are then combined within a decision tree (as 
illustrated in Fig. 4) to calculate the final category. 

Besides QSAR, a second methodology referred to as expert rule-based 
is developed in the Leadscope computational toxicology solution [21]. 
This is based on a series of structural alerts that encode features that 
activate and deactivate the toxicity. Such alerts are derived from expert 
knowledge embedded in the literature and/or extracted from toxicity 
databases. Structural alerts are ideally accompanied by a monograph 
describing the relevance of the moiety in the context of the endpoint of 
interest, such as any mechanistic rationale, as well as all examples from 
the database to support a contextual assessment. The identification of 
the series of expert alerts encoded within the Leadscope computational 
toxicology solution [21] can be assisted by specific informatics capa
bilities, such as clustering [25] and identification of significant chemical 
scaffolds [23]. 

The application of expert alerts to any test chemical will result in a 
prediction (such as positive, negative, or indeterminate) alongside a 

Table 2 
Databases used to support the hazard assessment platform  

Database Sources Mapped to effects/ 
mechanisms 

Hazard 
assessment 
framework 

Carcinogenicity CCRIS, CDER, CFSAN- 
PAFA, CPDB, DSSTox 
DBCAN, IARC, 
ISSCAN, NTP, RTECS 

Carcinogenicity ICH M7 

Genetic 
toxicology 

CCRIS, CDER, CFSAN- 
OFAS, CFSAN- PAFA, 
CPDB, EPA-Genetox, 
Submissions from 
organizations, 
Japanese NIHS, NTP, 
Tokyo Eiken, 
Publications, RTECS 

Bacterial mutation ICH M7, 
genetic 
toxicology 

Mouse Lymphoma Genetic 
toxicology 

Chromosome 
aberration in vitro 

Genetic 
toxicology 

Micronucleus in 
vitro 

Genetic 
toxicology 

Chromosome 
aberration in vivo 

Genetic 
toxicology 

Micronucleus in 
vivo 

Genetic 
toxicology 

Skin 
sensitization 

Publications, 
ICCVAM, NICEATM, 
ECHA 

Protein reactivity Skin 
sensitization 

Activation of Nrf2- 
ARE 

Skin 
sensitization 

Expression of co- 
stimulatory and 
adhesion molecules 

Skin 
sensitization 

Reaction domain Skin 
sensitization 

Rodent local lymph 
node proliferation 

Skin 
sensitization 

Rodent 
maximization 

Skin 
sensitization 

Human skin 
sensitization 

Skin 
sensitization 

Legend: CCRIS - Chemical Carcinogenesis Research Information System; CDER - 
US FDA CDER (Center for Drug Evaluation and Research) product approval re
views; CFSAN- PAFA - US FDA CFSAN (Center for Food Safety and Applied 
Nutrition) PAFA (Priority-based Assessment of Food Additives) database; 
CFSAN-OFAS - Genetic toxicity database from the US FDA CFSAN (Center for 
Food Safety and Applied Nutrition) reviews; CPDB - Carcinogenicity Potency 
DataBase; DSSTox DBCAN - Distributed Structure-Searchable Toxicity (DSStox) 
Public Database Network: DBCAN: EPA Water Disinfection By-Products with 
Carcinogenicity Estimates; EPA-Genetox - Mutagenicity test data from the US 
EPA; IARC - International Agency for Research on Cancer and Carcinogenicity 
classification; ISSCAN - Chemical carcinogens: structures and experimental data 
from Instituto Superiore di Sanita; Japanese NIHS - National Institute of Health 
Sciences of Japan (Publicly release class A chemicals); NTP – National Toxi
cology Program; RTECS - Registry of Toxic Effects of Chemical Substances; 
ICCVAM - Interagency Coordinating Committee on the Validation of Alternative 
Methods; NICEATM - The NTP Interagency Center for the Evaluation of Alter
native Toxicological Methods; ECHA - European Chemicals Agency 

1 EC3 value: the amount of a chemical that is required to elicit a three-fold 
increase in lymph node cell proliferative activity (SI ≥ 3) 
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confidence score based on the toxicological response value’s precision 
derived from the matching examples. Since a prediction is being made, it 
is essential to understand the applicability domain through a compari
son of the test chemical to the underlying reference set of compounds 
supporting the alerts. 

In silico profilers also make use of mechanism-based structural alerts 
[26]; however, they do not directly predict a toxicological outcome but 
place a chemical into a category to support either an assessment or an 
expert review. Several profilers have been incorporated within the 
Leadscope platform, including carcinogenicity cohorts of concern [2] 
and reaction domains [27] to support the assessment of skin 
sensitization. 

Finally, read-across is used to predict a toxicological outcome for a 
given chemical (target) based on the toxicological response from one or 
more sufficiently similar analogs (source). A read-across tool has been 
incorporated within the Leadscope computational toxicology solution to 
provide the opportunity to include such a prediction for the different 
effects or mechanisms. The tool identifies similar chemicals based on a 
series of different approaches, including structural similarity or a pre- 
defined chemical category. The tool supports the interactive explora
tion and refinement of the source chemicals, including the addition of 
proprietary examples, which can be documented in the tool. It also helps 
formulate how the toxicity data on the source chemicals is read-across 
onto the target. Frameworks, such as the Read-Across Assessment 
Framework or RAAF [28], are incorporated within the platform to 
support the complete expert review and documentation of the read- 
across study. 

Table 3 summarizes the different computational models that are 
incorporated within the Leadscope hazard assessment platform, 
including which effects or mechanisms they map on to. 

Visual hazard assessment platform 

An interactive graphical user interface of the hazard assessment 
framework has been developed by Leadscope to support the ICH M7 
guideline, the genetic toxicology in silico protocol and the skin sensiti
zation in silico protocol. The platform includes nodes representing the 
defined effects or mechanisms, displayed as gray nodes within Fig. 5. 
The relationship of these effects/mechanisms to one or more toxico
logical endpoints is also displayed. These endpoints are shown as nodes 
and are colored blue, as illustrated in Fig. 5. 

Wherever possible, each effect/mechanism is linked to results from 
applying computational models and database searches and each node 
summarizes these results. This information is accompanied by a score 
reflecting the reliability of the information, using the Reliability Score 
(RS) value described in Myatt et al., 2018 (summarized in Table 4); a 
confidence score tied to the endpoint assessment is also included [1]. For 
example, in Fig. 5, the bacterial mutation experimental data is shown as 
positive with a reliability score of RS5 and there are two in silico pre
diction results, one positive statistical-based result and one equivocal 
expert rule-based result (both assigned a reliability score of RS5). This 
information is automatically combined into a positive assessment for the 
bacterial mutation effect/mechanism, with a reliability score of RS5. 
This assessment together with other information is then used to derive 

Fig. 4. Decision tree for calculation of LLNA severity as implemented in the Leadscope computation toxicology solution Leadscope Model Applier. The platform 
provides a means to explore such decision tree that combines the underlying “categorical statistical” models. 

Table 3 
Summary of models incorporated into the current hazard assessment platform.  

Hazard assessment framework Effect/mechanism Computational models Type of model References 

ICH M7 Carcinogenicity Cohort of concern v1 Profiler  
ICH M7, genetic toxicology Bacterial mutation Bacterial mutation v2 Statistical-based [33] 
ICH M7, genetic toxicology Bacterial mutation Bacterial mutation v7 Expert rule-based  
Genetic toxicology Mouse Lymphoma MLA Activated v2; MLA unactivated v2 Statistical-based  
Genetic toxicology Chromosome aberration in vitro CA CHL v2 Statistical-based  
Genetic toxicology Chromosome aberration in vivo In vivo CA v2 Statistical-based  
Genetic toxicology Micronucleus in vivo In vivo micronucleus mouse v2 Statistical-based [34] 
Skin sensitization Protein reactivity DPRA v2 Statistical-based  
Skin sensitization Activation of Nrf2-ARE KeratinoSens v2 Statistical-based  
Skin sensitization Expression of co-stimulatory and adhesion molecules h-CLAT v2 Statistical-based  
Skin sensitization Reaction domain Reaction domain v2 Profiler  
Skin sensitization Rodent local lymph node proliferation LLNA Statistical-based  
Skin sensitization Rodent local lymph node proliferation LLNA Expert rule-based  

Legend: ICH M7 - International Committee for Harmonization (ICH) M7 guideline; CA – Chromosome aberration; CHL - Chinese Hamster Lung cells; DPRA - Direct 
Peptide Reactivity Assay; h-CLAT – Human Cell Line Activation Test; LLNA - Local Lymph Node Assay 
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an assessment for the Gene Mutation endpoint (positive) along with a 
confidence score (low). The rules/principles for combining these types 
of information and generating the final assessment together with cor
responding confidence are detailed in the protocols. It should be noted 
that the overall reliability score is associated with a single effect/ 
mechanism based on available experimental and/or in silico data for that 
effect/mechanism. The confidence score is associated with a single 
endpoint; however, it is based on the propagation of information from 
all related effects/mechanisms as well as other endpoints. 

Each node in the Leadscope platform is interactive: by clicking on 
any node further information is shown, as illustrated in Fig. 5. For 
example, by clicking on the box annotated with a “1′′, information on the 
individual studies from the toxicology database search is displayed. This 
includes a summary of the results and a link to the full study report. It is 
possible to select which of the studies, based on a review of the study 
adequacy, to include in the current assessment. A default overall 
assessment and reliability score based on the studies identified is shown; 
however, it is possible to update both values following an expert review 
of the data. It is also possible that a proprietary study has been run on the 
chemical, and this study may be included in the expert review; it can 
thus be integrated and documented in the assessment by summarizing 
the results and uploading the full study report into the platform. 

Further details on the predictions are also available by clicking on 
the box annotated with a “2” (Fig. 5). This includes an explanation of the 
model results and access to structurally similar analogs. The protocols 
provide guidelines for elements to consider as part of an expert review of 
the in silico results. These guidelines are also incorporated into the 
platform, as shown in Fig. 6. An inspection of any of these guideline 
elements may: (1) increase in the prediction’s reliability, (2) result in no 
increase in the prediction’s reliability, (3) refute the prediction, or (4) 
provide no additional supporting information. Fig. 6 shows how, for 
each of the elements of an expert review, it is possible to view contextual 
information to support and document such an examination. 

The platform allows for the integration of a read-across study in an 
assessment for any of the effects/mechanism. A node is linked to the 
read-across tool that will both perform and document the read-across 

Fig. 5. On demand details available for nodes representing the effects/mechanisms and the derived endpoints.  

Table 4 
Reliability Scores  

Reliability 
Score 

Klimish 
Score 

Description Summary 

RS1 1 Data reliable 
without 
restriction 

Well documented and accepted 
study or data from the 
literature 
Performed according to valid 
and/or accepted test guidelines 
(e.g., OECD) 
Preferably performed 
according to good laboratory 
practices (GLP) 

RS2 2 Data with 
restriction 

Well documented and 
sufficient 
Primarily not performed 
according to GLP 
Partially complies with test 
guideline 

RS3 – Expert review Read-across 
Expert review of in silico result 
(s) and/or Klimisch 3 or 4 data 

RS4 – Multiple 
concurring 
prediction results  

RS5 – Single acceptable 
in silico result  

RS5 3 Data not reliable Inferences between the 
measuring system and test 
substance 
Test system not relevant to 
exposureMethod not 
acceptable for the endpoint 

RS5 4 Data no 
assignable 

Not sufficiently documented 
for an expert review 
Lack of experimental details 
Referenced from short abstract 
or secondary literature  
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study. It is also possible to add the results from models not directly 
incorporated within the platform or a read-across assessment performed 
outside the platform. The details of these external results can be added, 
including meta information, modelling approach or any other parame
ters. The full in silico report can also be uploaded into the platform to 
provide full transparency. 

The platform collects all the information tied to both experimental 
and in silico results, and any expert review that modified the individual 
assessments or reliability scores; an overall assessment for the effect/ 
mechanisms is then automatically derived as shown in Fig. 5 (annotated 
with “3”). Additional details on the rules and principles that were used 
to derive these values can be inspected and potentially modified based 
on a documented expert review. Fig. 7 shows how the reliability score 
for the bacterial mutation experimental data was changed from RS5 to 
RS1, after an expert review concluded the results warrant the highest 
reliability score. 

Fig. 5 also shows how this information associated with effects/ 
mechanisms is, in turn, used to make an assessment for one or more 
derived endpoints alongside a confidence level. The rule/principles for 
deriving this call as documented in the protocol are available for in
spection, i.e., clicking on the node annotated with “4” in Fig. 5. In a 
similar manner, it is also possible to revise the assessment based on a 
documented expert review. 

For the specific case of a complete ICH M7 hazard assessment, the 

corresponding platform is shown in Fig. 8 and includes experimental 
data and in silico prediction models/profilers for bacterial mutation and 
carcinogenicity. This information is combined, based on a series of rules 
(shown in Fig. 9), to generate an overall ICH M7 class designation (as 
shown in Table 1) along with supporting information on the reliability 
and confidence of the information. It should be noted, there is no in
termediate assessment of individual effects/mechanisms as the ICH M7 
class designation is based on the outcome of the available two nodes, i. 
e., bacterial mutation and carcinogenicity. Fig. 10 shows the complete 
genetic toxicology hazard assessment framework, and Fig. 11 the com
plete skin sensitization hazard assessment framework as they are 
implemented within the platform. 

Results 

Tables 5 and 6 summarize both the database content and the in silico 
models’ performance that are used within the hazard assessment plat
form. The platform currently comprises three finalized frameworks: the 
ICH M7 hazard assessment framework, complete genetic toxicology 
hazard assessment framework [16], and the complete skin sensitization 
hazard assessment framework [17]. 

Fig. 6. In silico expert review checklist and accompanying contextual information.  

Fig. 7. Interactively modify the results.  
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Case studies 

Overview 

The only required information to initiate a hazard assessment is the 
electronic record of the chemical structure. This can be either uploaded 
from a file, such as a MOL file or SMILES string, identified through a 
database search or drawn within Leadscope’s structure drawing package 
or elsewhere. The following case studies illustrate how the platform 
(implemented in the Leadscope model applier v3.1) described in this 
paper can be used to assess four chemicals. 

Case study 1: ICH M7 assessment of 2-bromo-5-acetamidobenzoic acid 

Upon running the ICH M7 protocol for the target impurity (2-bromo- 
5-acetamidobenzoic acid), available experimental data and the outcome 

of the individual models (i.e., expert rule- and statistical-based systems) 
are summarized in a table alongside the ICH M7 class assignment, cor
responding confidence and additional supportive evidence and com
ments (Fig. 12). More specifically, no experimental bacterial 
mutagenicity data nor carcinogenicity data are available from the 
Leadscope databases, and the two complementary (Q)SAR methodolo
gies provide negative predictions for bacterial mutagenicity. This in
formation is automatically combined into a Class 5 assignment with a 
default medium level confidence. Such confidence level is justified by 
the absence of any expert review at this initial stage of the protocol 
workflow. 

To increase the confidence level, an expert review can be conducted, 
and it is guided by the workflow encoded in the ICH M7 protocol in the 
Leadscope Model Applier. Fig. 13 illustrates the different steps of this 
workflow. The expert review of the statistical-based model confirms the 
negative prediction of the target impurity based on the following 

Fig. 8. Implementation of the ICH M7 hazard assessment framework within the platform.  

Fig. 9. Rules for deriving the ICH M7 classification.  
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elements: a) a low positive prediction probability (PPP = 0.173); b) a 
good coverage of the structure of the target impurity; c) negative fea
tures providing higher contributions to the prediction leading to a clear 
negative call; d) no concern from the features associated with positive 
contributions to the prediction since these features are represented in 
experimentally negative compounds (e.g., Acedoben and Acetanilide); 
e) good accuracy of analogs’ predictions that supports the reliability of 
the prediction. The review of the expert rule-based system also confirms 
the negative outcome, given the absence of structural alerts of potential 
concern for mutagenicity, and supporting evidence coming from the 
experimental data for the closer analogs in the alert reference set, which 
are negative and correctly predicted as negative by the model. 

For this molecule, the expert review notes that the potential meta
bolism of the target impurity should be also considered since the 
chemical contains an aromatic amide functional group, that may be 
bioactivated to a primary aromatic amine [29]. Certain primary aro
matic amines are mutagenic, and the position of ring substituents in
fluences the chemical’s mutagenic potential [30]. Ahlberg and co- 
workers analyzed a series of functional groups in different positions 
relative to the amino group to determine whether they are potentially 
activating [30]. In the case of the target impurity, the carboxylic acid in 
the meta position and the bromine in the para position are not consid
ered activating. Therefore, even if the chemical undergoes metabolic 
activation resulting in a primary aromatic amine, the metabolite is un
likely to be mutagenic given the presence of these two ring substituents. 

The expert review considerations confirm the negative outcome 
provided by the statistical- and expert rule-based models and the call’s 
reliability score is increased for the individual models to RS3 (prediction 
with expert review). The outcome of the two models can then be com
bined to derive an overall assessment of the target impurity. For the 
combination of the two negative results, the current expert review also 
considers the low risk of missing a mutagenic impurity according to the 
analysis published by Amberg et al. [4]. This analysis using a large 
bacterial mutation data set shows that, when both statistical-based and 
expert rule-based methods generate a negative (in domain) assessment, 

such mutagenic risk is equal to 8.1% (6% by Dobo et al. [6]). The expert 
review can thus conclude that the target impurity is predicted as not 
mutagenic, i.e., negative for bacterial in vitro mutagenicity (Ames test), 
and the confidence of the prediction is increased to a high level. As such, 
the target impurity 2-bromo-5-acetamidobenzoic acid is assigned to the 
ICH M7 Class 5, and a standard report is generated including all the 
considerations of the expert review that were duly mapped throughout 
the ICH M7 protocol workflow. 

Case study 2: ICH M7 assessment of 1-chloro-2-nitrobenzene 

The ICH M7 hazard assessment performed for 1-chloro-2-nitroben
zene identifies available experimental data in the Leadscope toxicity 
database: positive bacterial mutagenicity and carcinogenicity data. 
These data are organized by the tool in the summary table illustrated in 
Fig. 14. The target impurity is preliminarily assigned to the ICH M7 Class 
1 by the standardized workflow, which automatically sets a high con
fidence for the assignment. 

An expert review of the positive data is conducted to confirm the 
overall positive outcome as illustrated in Fig. 15. By clicking on the 
experimental data bacterial mutagenicity node, the data used in the 
assessment can be inspected alongside all the mutagenicity studies 
identified for the target impurity. An expert review of the available data 
determines that there is clear evidence of the mutagenic activity of the 
target impurity and therefore the experimental data reliability is 
increased from a reliability score of RS5 to a reliability score of RS1. To 
further confirm the positive outcome, the in silico predictions for 1- 
chloro-2-nitrobenzene are analyzed. The two complementary (Q)SAR 
methodologies provide consistent positive outcomes. The positive pre
diction given by the statistical model is driven by the correspondence of 
target impurity with an experimentally positive training compound; the 
model features identified by the model adequately cover the structure of 
the target impurity, with the aromatic nitro and cyclic nitro moieties 
providing higher contribution to the prediction. This results in a clear 
positive call. The expert rule-based methodology further supports the 

Fig. 10. Implementation of the genetic toxicology in silico protocol’s hazard assessment framework within the platform.  
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positive outcome because of the identification of the aromatic nitro 
structural alert of potential concern for mutagenicity. In addition, the 
target impurity belongs to the alert reference set and this steers the 
positive expert rule-based prediction. Based on the above 

considerations, the current expert review concludes that the target im
purity 1-chloro-2-nitrobenzene is mutagenic, i.e., positive for bacterial 
mutation (Ames test) with a high confidence. 

The positive experimental carcinogenicity data and corresponding 
studies identified by the tool for the target impurity are next inspected 
together with all the carcinogenicity studies. Such studies provide clear 
evidence of the carcinogenic activity of 1-chloro-2-nitrobenzene and 
therefore the experimental data reliability is increased from a reliability 
score of RS5 to a reliability score of RS1. 

The ICH M7 protocol workflow allows for the combination of the 
positive bacterial mutation and carcinogenicity results that lead to an 
ICH M7 Class 1 assignment with high-confidence for the target impurity 
1-chloro-2-nitrobenzene. Experimental data, in silico predictions and 
considerations of the expert review are all structured in a standardized 
report to be shared with third parties. A reviewer can then use the 
detailed information organized in such report to formulate an inde
pendent assessment. 

Case study 3: Genetic toxicology assessment of m-xylylenediamine 

When the genetic toxicology protocol is applied on m-xylylenedi
amine, the tool performs database searches and run in silico models for 
each effect/mechanism defined by this hazard assessment framework 
[16], summarized in Fig. 15. 

The protocol window, as shown in Fig. 17, then guides the expert 
review of the experimental data and in silico results as gathered by the 
tool for each effect/mechanism. 

First, the genetic mutation potential is assessed by considering 
available information for bacterial mutation and mammalian gene 

Fig. 11. Implementation of the skin sensitization in silico protocol’s hazard assessment framework within the platform.  

Table 5 
Summary of the results from the database  

Database Mapped to effects/ 
mechanisms 

Number of 
chemicals 

Number 
of studies 

Number 
of tests 

Carcinogenicity Rodent 
carcinogenicity 

5,700 18,084 27,099 

Genetic 
toxicology 

Bacterial mutation 12,694 41,914 288,280 
Mouse Lymphoma 5,921 11,764 16,227 
Chromosome 
aberration in vitro 

5,660 6,575 11,794 

Micronucleus in vitro 1,298 794 1,065 
Chromosome 
aberration in vivo 

1,026 2,679 3,054 

Micronucleus in vivo 4,078 9,148 12,010 
Skin 

sensitization 
Protein reactivity 271   
Activation of Nrf2- 
ARE 

281   

Expression of co- 
stimulatory and 
adhesion molecules 

239   

Reaction domain 458   
Rodent local lymph 
node proliferation 

2,176 3,266 1,893 

Rodent 
maximization 

54   

Human skin 
sensitization 

151    
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Table 6 
Summary of in silico performance results  

Effect/ 
mechanism 

Computational 
models 

Type of 
model 

Type of 
validation 

Count Concordance 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

PPV 
(%) 

NVP 
(%) 

Comment 

Bacterial 
mutation 

Bacterial 
mutation v2 

Statistical Cross 
validation 
(5%) 

9,254 85 85 86 88 83  

Bacterial 
mutation 

Bacterial 
mutationv2 

Statistical External 
validation 

388 83 82 83 56 95 Reported in [33] 

Bacterial 
mutation 

Bacterial 
mutation v7 

Expert rules Internal 
validation 

11,528 87 87 88 89 86  

Mouse 
Lymphoma 

MLA Activated 
v2 

Statistical Cross 
validation 
(5%) 

675 76 75 76 72 80  

Mouse 
Lymphoma 

MLA 
unactivated v2 

Statistical Cross 
validation 
(5%) 

752 76 79 74 73 80  

Chromosome 
aberration in 
vitro 

In Vitro Chrom 
Ab CHL v2 

Statistical Cross 
validation 
(3%) 

874 77 80 74 78 76  

Chromosome 
aberration in 
vivo 

In Vivo Chrom 
Ab Comp v2 

Statistical Cross 
validation 
(2%) 

285 77 80 74 78 76  

Micronucleus in 
vivo 

In vivo 
micronucleus 
mouse v2 

Statistical Cross 
validation 
(5%) 

1001 76 75 76 60 87 3 sub-models 

Micronucleus in 
vivo 

In vivo 
micronucleus 
mouse 

Statistical External 
validation 

42 80 67 84 57 89 91% coverage; Reported 
in [34] 

Protein reactivity DPRA v2 Statistical Cross 
validation 

176 87 93 71 90 79 Categorical model. The 
sensitivity and specificity 
of the DPRA categorical 
model was calculated 
based on the binary values 
of positive and negative, 
where positive reactivity 
values are defined as a 
mean % depletion >
6.38% (low, moderate and 
high reactivity), and the 
no or minimal reactivity 
class (mean % depletion 
<= 6.37%) is negative. 

Activation of 
Nrf2-ARE 

KeratinoSens v2 Statistical Cross 
validation 
(10%) 

234 78 83 71 79 76  

Expression of co- 
stimulatory 
and adhesion 
molecules 

h-CLAT v2 Statistical Cross 
validation 

179 75 76 72 91 46 4 sub-models 

Rodent local 
lymph node 
proliferation 

LLNA v2 Statistical 
(categorical) 

Cross 
validation 

843 80 85 73 82 77 Categorical model. The 
sensitivity and specificity 
of the LLNA categorical 
model was calculated 
based on the binary values 
of positive and negative, 
where positive values are 
defined as a EC3 % <=

100% (weak, moderate 
and strong/extreme 
sensitizers), and the non- 
sensitizers (EC3 % >
100%) are negative. 

Rodent local 
lymph node 
proliferation 

LLNA v2 Expert rules Internal 
validation 

843 85 80 92 93 77 The sensitivity and 
specificity of the LLNA 
categorical model was 
calculated based on the 
binary values of positive 
and negative, where 
positive values are defined 
as a EC3 % <= 100% 
(weak, moderate and 
strong/extreme 
sensitizers), and the non- 
sensitizers (EC3 % >
100%) are negative.  
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mutation. The negative bacterial mutation experimental data is 
inspected. It indicates clear evidence of non-mutagenic activity for the 
target chemical according to studies compliant with the OECD 471 
guideline’s requirements [3]. As such, the default reliability score of RS5 
is increased to RS1. To further confirm the negative outcome, the in silico 
predictions for m-xylylenediamine are next analyzed. The two comple
mentary (Q)SAR methodologies provide consistent negative outcomes. 
Expert review sets the reliability score of these in silico results to RS3, 
whereas the overall negative bacterial mutation assessment that also 
accounts for the available experimental data (RS1) can be associated 
with an RS1 score. 

For the mouse lymphoma assessment, the protocol shows that 
negative experimental data are available and in silico predictions are 
generated; an expert review concludes that there is sufficient evidence to 
increase the reliability of the experimental data to RS1 whereas the in 
silico predictions can be associated with an RS3 score. This is combined 

in the protocol workflow into an overall negative mouse lymphoma 
assessment with a reliability score of RS1. 

The bacterial mutation and the mouse lymphoma assessments are 
used to derive the overall negative gene mutation potential. Given the 
reliability scores that have been set during the expert review, the con
fidence of this negative result is automatically assigned by the protocol 
to “High” [16]. 

Next the clastogenicity / aneugenicity in vitro endpoint (see Fig. 17) 
is assessed by inspecting the available chromosome aberration in vitro 
experimental data and in silico results. An expert review confirms the 
initial negative assessment that is associated with an RS1 score. These 
results are used to derive the negative assessment for the clastogenicity / 
aneugenicity in vitro endpoint with a medium confidence due to the lack 
of information on micronucleus in vitro. 

The next step consists in reviewing the assessment of the clastoge
nicity/aneugenicity in vivo potential (see Fig. 16). No experimental 

Fig. 12. Summary of the preliminary results of the ICH M7 hazard assessment of 2-bromo-5-acetamidobenzoic acid.  

Fig. 13. ICH M7 hazard assessment workflow for 2-bromo-5-acetamidobenzoic acid.  
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evidence is available for m-xylylenediamine concerning chromosome 
aberration in vivo, whereas the in silico model (i.e., a statistical-based 
system) provides an out-of-domain result triggered by the absence of 
similar structures in the training set. Expert review of this prediction 
suggests that it is feasible to overturn the out-of-domain outcome into a 
negative call based on the following elements: a) a low positive pre
diction probability (PPP = 0.124); b) a good coverage of the m-xylyle
nediamine structure; c) negative features contributing to the prediction 
leading to a clear negative call; d) no features associated with a positive 
contribution. Since only one model is used to predict chromosome ab
erration in vivo without any sufficiently similar analogs, the reliability 
score of the chromosome aberration in vivo prediction is set to RS5. An 
expert review of the micronucleus in vivo experimental data and in silico 

results increases the experimental reliability score to RS1 and overturns 
the out-of-domain prediction into a negative prediction with RS5 score 
(based on the good coverage of the structure of m-xylylenediamine in 
addition to the lack of any reactive potential). A negative assessment 
with RS1 score is then set for the micronucleus in vivo assessment. The 
results for chromosome aberration in vivo (negative RS5) and micronu
cleus in vivo (negative RS1) are combined for the negative assessment of 
the overall clastogenicity / aneugenicity in vivo potential, with corre
sponding “Medium” confidence set by the tool according to the protocol 
rules [16]. 

The clastogenicity / aneugenicity in vitro (negative, medium confi
dence) and in vivo (negative, medium confidence) sub-endpoints are 
then combined into a single clastogenicity / aneugenicity endpoint. This 

Fig. 14. Summary of the preliminary results of the ICH M7 hazard assessment of 1-chloro-2-nitrobenzene.  

Fig. 15. ICH M7 hazard assessment workflow for 1-chloro-2-nitrobenzene.  
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is assessed as negative with a “Medium” confidence as proposed by the 
tool. 

Finally, all the results of the sub-endpoints (see Fig. 16) are auto
matically combined into a single overall negative assessment of “Genetic 
Toxicity” with a medium confidence score, confirmed by the expert 
review. 

The genetic toxicology assessment is then saved in a report sum
marizing the results alongside the elements considered in the expert 
reviews. The report consists of a single editable word document 
including an executive summary (covering materials and methods used 
for the prediction of each effect/mechanism; any rules and principles 
used to combine the information; results for the individual effects/ 
mechanisms and associated reliability scores; results for the endpoints 
and associated confidence scores) and the hazard assessment framework 
view (broken down into a series of graphs) and any comments included 
in the assessment. In addition, a zip file containing an appendix of in
formation is created including full study and in silico reports for each 
individual prediction. 

Case study 4: Skin sensitization assessment of bis-GMA 

The following case study describes the assessment of bis-GMA (CAS 
1565–94-2) using the implemented version of the skin sensitization 
protocol. The software returns an assessment of positive with high 
confidence for skin sensitization in humans. The main endpoints, “skin 
sensitization in rodents” and “skin sensitization in vitro” are assessed as 
positive with a high and low confidence levels, respectively. Fig. 18 
provides an overview of the workflow used to derive the overall 
assessment. 

The “Explain” function is used to understand the basis for the posi
tive prediction and the confidence level. It is important to explore any 
experimental data or in silico predictions that are used in the assessment 
and how reliable the data are. In silico predictions are used to assess all 
the relevant mechanisms/effects while experimental data are available 
for the LLNA and h-CLAT assessments. A high-level overview shows that 
the h-CLAT experimental data disagrees with the positive LLNA exper
imental assessment. Further, the positive h-CLAT statistical model 
outcome does not support the negative experimental h-CLAT assess
ment. Both these results are initially assigned a reliability score of RS5 
and the ‘Expression of co-stimulatory and adhesion molecules’ endpoint 
is left unassigned given conflicting assessments of the same reliabilities, 
Fig. 19. This prompts an expert review. 

The skin sensitization protocol outlines factors that could lead to 
false negative results in the h-CLAT experimental system and discusses 
the exclusion of chemicals with a Log P value >3.5 from the applicability 
domain of the h-CLAT test [17,31]. The calculated ALogP value of bis- 
GMA (3.73) marginally falls within this range and a false negative 
experimental result is suspected. This non-applicability of the experi
mental system is reflected in the test guideline [32] and does not support 

an increase in the reliability of the experimental h-CLAT data. An 
explanation of the positive statistical prediction shows that the result is 
within the applicability domain of the model with 10 structural features 
mapping to the Bis-GMA structure and a predicted probability of 0.79. 
The feature weighting, relevancy of the model descriptors and suffi
ciency of training set data are evaluated as part of the expert review 
process as prompted by the checklist of items to consider for an expert 
review, Fig. 20. 

The feature which contributes most to the positive weight is the 
acrylate group. The activity of the training set examples cannot be 
explained through any moiety other than the (meth)acrylate feature, 
and a potential reaction mechanism could be postulated based on this 
feature. This supports the relevancy of the structural moiety and an 
increased prediction reliability. Of note however, the training set data 
are non-aromatic structures, which lack diversity and the influence of 
the aromatic ring on the activity cannot be adequately assessed. Overall, 
the expert review of the statistical model’s positive prediction confirms 
such result given the weighting of features and the mechanistic basis 
which could be attributed to the acrylate feature. The level of evidence 
supports an increase in reliability to an RS3 level for this positive result. 
Since the RS3 reliability is higher than the RS5 reliability of the exper
imental data, the positive prediction is used in the assessment. The 
“Events in Dendritic cells” endpoint automatically changes to a positive 
outcome, with a medium confidence level. Fig. 21 shows a manual 
override of the result, the associated documentation and the updated 
“Events in Dendritic cells” node. 

After working through the assessment of the “Events in Dendritic 
cells” endpoint and understanding the negative experimental results and 
the evidence presented by the in silico methods, one of the two following 
approaches could be taken. Either, an evaluation of in vitro endpoints 
which were predicted by in silico models (“Covalent interaction with 
skin proteins” and “Events in Keratinocytes”) could be continued or any 
additional experimental data could be assessed. The latter approach is 
adopted here since a high-quality experimental result would be suffi
cient for a regulatory assessment, particularly where any conflicting 
information can be explained. An assessment of the rodent LLNA result is 
made based on an experimental study linked to the test structure con
tained in the database. This study indicates weak sensitization potential 
and is assigned a reliability score of 1. Clicking on the experimental 
results for the LLNA returns the studies that are available for expert 
review, including their references and a comment field to document any 
findings, Fig. 22. 

The LLNA statistical model (predicting weak potency class) and 
expert alert results (acrylates and methacrylate alert matched) further 
support the positive assessment and potency classification. The assess
ment of the “skin sensitization in rodents” endpoint is therefore assessed 
as positive (weak potency) with high confidence. At this point, there 
does not appear to be conflicting evidence across the framework and the 
positive “sensitization in vitro” assessment supports the overall positive 

Fig. 16. Summary of the preliminary results of the genetic toxicology protocol of m-xylylenediamine.  
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outcome with high confidence for skin sensitization hazard of Bis-GMA. 
However, it is prudent to review the statistical models predicting protein 
reactivity and activation of the Nrf2-ARE pathway (keratinocyte acti
vation) to confirm that there is no conflicting information. Similar to the 
h-CLAT assessment, clicking on the nodes which contains the model 
predictions returns the explain model, find analogs and expert review 
fields (see Fig. 17). The DPRA model predicts moderate protein 

reactivity with a probability of 0.921 which is driven primarily by the 
acrylate feature (see Fig. 23). 

The result is similar to the Keratinosens™ statistical model’s pre
diction (see Table 6 for additional information on the models). In both 
cases, the expert review supported an increase in reliability to an RS3 
level and the “covalent interaction with skin proteins” and the “Events in 
Keratinocytes” endpoints are both assessed as positive with medium 

Fig. 17. Genetic toxicology assessment workflow for m-xylylenediamine. The original genetic toxicology assessment is reviewed by inspecting and analyzing: i) 
genetic mutation potential; ii) clastogenicity in vitro; iii) clastogenicity in vivo. 
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confidence. Together with the h-CLAT assessment, the “skin sensitiza
tion in vitro” endpoint is assessed as positive, with medium confidence 
and the system explains that this assessment is based on an encoded rule 
of “at least two positive assessments aligned” for the “sensitization in 
vitro” endpoint. The “sensitization in vitro” assessment supports the final 
assessment of positive, with high confidence which is based primarily on 
LLNA results as the key study. 

Discussion 

The tool described in this paper addresses many critical issues that 
enable the use of integrated approaches for toxicological hazard 
assessment to be used across industrial and regulatory applications. By 
being based on commonly agreed principles and procedures, such as in 

silico toxicology protocols, the platform provides an approach that is 
defendable to colleagues and peers. By incorporating transparent met
rics of reliability, relevance and confidence, the approach supports many 
different applications, from regulatory submissions to screening chem
icals, that tolerate differing levels of uncertainty. The visual platform is 
transparent, clearly showing the steps in the assessment process, with 
details available at any stage on demand. The ability to interact with the 
platform supports a thorough expert review. Such a review may modify 
any conclusions on any of the effects, mechanisms, or derived toxico
logical endpoints. The deviations from the default assessment (described 
in the protocols) are recorded along with their justifications. Automat
ically documenting this entire process, including the source materials 
(experimental and in silico results) and the entire decision-making pro
cess, and tracking the expert review rationale ensure the results are 

Fig. 18. Workflow to derive an assessment of skin sensitization using the implemented skin sensitization protocol.  
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effectively, completely, and consistently reported. At the same time, this 
automatic approach avoids any transcription errors. The documentation 
supports an outside review and would also enable a third party to repeat 
the process. The visual platform is based on a consistent organization 
and will support many different regulatory guidelines and protocols. 
Hence, this approach may be easily adopted when new regulations and 
in silico toxicology protocols are developed. 

As mentioned earlier, an expert review plays an important role 
throughout the assessment process which is invariably subjective. To 
mitigate this concern, a series of guidelines and case studies were 
introduced and detailed in different in silico protocol-related papers 
[1,4,5,16,17]. Using these commonly agreed principles for performing 
such a review, a more consistent approach will support the application 
of in silico assessments across different regulatory frameworks and 
jurisdictions. 

This paper has outlined a series of case studies based on publicly 

available databases and in silico models. The framework described also 
supports the integration of proprietary experimental data to use in the 
assessment of individual effects/mechanisms. Proprietary experimental 
data on chemicals analogs can also be utilized in this framework, by 
introducing a read-across prediction and as part of an expert review of 
the in silico results. In addition, proprietary models can also be used to 
assess individual effects/mechanisms. This may be helpful when the test 
chemical falls outside the chemical space from which the public models 
were built. When such assessments are performed for external groups, 
such as regulatory agencies, it may be necessary to disclose the model’s 
training set to be transparent. Such disclosure often makes the use of 
these proprietary models impractical. There are also approaches that 
avoid the use of proprietary data directly yet incorporate knowledge 
derived from proprietary database, such as the SAR fingerprinting 
approach. [30] 

Fig. 19. Assessment node for the “Expression of co-stimulatory adhesion molecules” based on the h-CLAT method. Clicking on the result allows access to underlying 
information. 

Fig. 20. Access to underlying information allows an expert review to be performed in a consistent manner.  
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Conclusion 

The integrated assessment of toxicological endpoints, where a bat
tery of experimental and in silico methods are combined, is important to 
current and future toxicological hazard assessments. It provides a more 
mechanistically interpretable approach that also supports the 3Rs. The 

successful application of such approaches to hazard assessment will 
require the adoption of quality-driven standards and processes. Tools 
that support such assessments in an efficient, transparent, defendable, 
and repeatable manner, such as the visual and interactive platform 
described in this paper, will be essential to support hazard assessment 
based on these new methods. 

Fig. 21. Influence of expert review findings on the assessment of “Events in Dendritic cells” endpoint.  

Fig. 22. Review of experimental study and assessment of reliability.  
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